ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
Jing Zhao, Yongwei Yang, Sicong Xiao, Zhiwei Zhou
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 521-524
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19145
Articles are hosted by Taylor and Francis Online.
Progress on the fusion-fission hybrid reactor (FFHR) brings fusion a viable energy source in foreseeable future. Energy multiplication in a FFHR makes a much easier prerequisite for the fusion reaction than a fusion reactor. The molten salt reactor has advantages on heat transfer and post-processing of the spent fuels. A fission blanket made of molten salt was studied for the FFHR. The molten salt consists of F-Li-Be, with nuclear fuels dissolved in it. When thorium-uranium-plutonium fuels were added into a F-Li-Be molten salt zone with a component of 71% LiF -2% BeF2 -13.5% ThF4 -8.5% UF4 -5% PuF3, the appropriate blanket energy multiplication factor and TBR can be obtained. Two different molten salt models (Single molten salt zone model and multi molten salt zone model) were designed and compared in this study. The changes in blanket multiplication factor, M, and the tritium breeding ratio, TBR, during burnup life are investigated. The burnup analysis of the molten salt blanket was carried out by the COUPLE2 code. Through the burnup analysis, the breeding of the fissile fuel 233U and the transmutation of the minor actinides were also studied.