ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
David W. DePaoli, Timothy C. Scott
Nuclear Technology | Volume 101 | Number 1 | January 1993 | Pages 54-66
Technical Paper | Waste Management Special / Radioactive Waste Disposal | doi.org/10.13182/NT93-A34767
Articles are hosted by Taylor and Francis Online.
A numerical model of transient diffusive mass transfer through a circular hole that connects two semiinfinite media was used as a means of determining potential effects of waste container penetrations on the release of immobilized contaminants into the environment. The finite difference model as developed necessarily includes treatment of mass transport in both the waste and surrounding medium and allows calculation of release rates for cases with and without preferential adsorption and differing diffusivities of the two media. The dimensionless contaminant release rate was found to vary over several orders of magnitude depending on the product of the ratio of the distribution coefficient and the media diffusivities only. As would be intuitively expected, partitioning favoring the surrounding medium and higher relative waste medium diffusivity cause higher transport rates. There was definitely no unexpected enhancement in the release rate in the case of perforations over that of an uncontained waste form.