ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Hsing Chien Yeh, William E. Kastenberg, Walter J. Karplus
Nuclear Technology | Volume 84 | Number 1 | January 1989 | Pages 23-32
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34193
Articles are hosted by Taylor and Francis Online.
A new approach for high-speed simulation is applied to the analysis of nuclear power system dynamics. The proposed approach is to first identify inherent parallelism and then to develop suitable parallel computation algorithms. The latter includes numerical integration and table lookup techniques that can be used for achieving high-speed simulation. A performance evaluation of the proposed methodology has been completed, which is based on benchmark simulation for pressurized water reactor plant dynamics. The multirate integration algorithm and an innovative table lookup technique running on a parallel processing computer system have proved to be the most advantageous in computational speed. Moreover, by using the proposed approach, faster than real-time dynamic simulation of nuclear power plant transients can be achieved.