A tomographic method for experimental investigation of the integrity of used light water reactor fuel assemblies has been developed. It is based on spectroscopic measurements of the gamma radiation from fission products in fuel rods. The method utilizes beforehand information about the nominal geometry of both the measured fuel assembly and the measurement equipment. A reconstruction code of the algebraic type has been written.

The potential of the technique has been examined in extensive simulations, assuming a gamma-ray energy of either 662 keV (137Cs) or 1274 keV (154Eu). The ability of detecting various configurations of manipulated rods, both single and in groups, has been investigated. Two main types of manipulations have been simulated.

First, there is the removal of rods without replacement. The results indicate that all investigated configurations of removed rods in boiling water reactor (BWR) fuel can be reliably detected using 137Cs radiation. For pressurized water reactor (PWR) fuel, the same result is obtained, with the exception of the most central positions. Here, the more penetrating radiation from 154Eu may have to be used.

Second, there is the replacement of rods with fresh fuel or fuel-like material. The results clearly indicate that all simulated cases of such manipulation can be most confidently detected. The simulations include various configurations of replaced rods in both BWR and PWR fuel, using both gamma-ray energies.