ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Masaki Saito, Vladimir A. Apse, Vladimir V. Artisyuk, Anatolii N. Chmelev
Nuclear Technology | Volume 133 | Number 2 | February 2001 | Pages 229-241
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-A3171
Articles are hosted by Taylor and Francis Online.
Transmutation of radioactive Cs from fission products of nuclear reactors without the potentially dangerous and expensive operation of isotopic separation is addressed. Transmutation is proposed to be performed in the blanket of a fusion neutron source with the plasma performance characteristics inherent in the current research on fusion reactors. The domain of Cs transmutation is quantitatively determined with detailed neutronics analysis of hard and softened neutron spectra, the effect of first wall loading, and two reprocessing modes. One is continuous on-line reprocessing; another one deals with a multicycle option in which a substantially long irradiation period is assumed before reprocessing. Transmutation efficiency is estimated in terms of the effective lifetime of 135Cs, which is the key characteristic governing the approach to equilibrium and the fraction of power associated with cesium transmutation in a nuclear energy system as a whole. In a contrast to fast reactors and accelerator-driven systems, fusion-driven transmutation reveals time to approach equilibrium that is comparable with the lifetime of transmuter and power associated with transmutation lies well within 5% of the total power of the nuclear energy system composed of fission reactors and transmuters.