ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Yasushi Nomura
Nuclear Technology | Volume 131 | Number 1 | July 2000 | Pages 12-21
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3101
Articles are hosted by Taylor and Francis Online.
In a reprocessing facility where nuclear fuel solutions are processed, one could observe a series of power peaks, with the highest peak right after a criticality accident. The criticality alarm system (CAS) is designed to detect the first power peak and warn workers near the reacting material by sounding alarms immediately. Consequently, exposure of the workers would be minimized by an immediate and effective evacuation. Therefore, in the design and installation of a CAS, it is necessary to estimate the magnitude of the first power peak and to set up the threshold point where the CAS initiates the alarm. Furthermore, it is necessary to estimate the level of potential exposure of workers in the case of accidents so as to decide the appropriateness of installing a CAS for a given compartment.A simplified evaluation model to estimate the minimum scale of the first power peak during a criticality accident is derived by theoretical considerations only for use in the design of a CAS to set up the threshold point triggering the alarm signal. Another simplified evaluation model is derived in the same way to estimate the maximum scale of the first power peak for use in judging the appropriateness for installing a CAS. Both models are shown to have adequate margin in predicting the minimum and maximum scale of criticality accidents by comparing their results with French CRiticality occurring ACcidentally (CRAC) experimental data.