ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
André Zoulalian, Edith Belval-Haltier
Nuclear Technology | Volume 130 | Number 3 | June 2000 | Pages 362-371
Technical Paper | Radioisotopes | doi.org/10.13182/NT00-A3099
Articles are hosted by Taylor and Francis Online.
The interactions of gaseous molecular iodine with painted surfaces aged in French nuclear pressurized water reactors (PWRs) were carried out in an experimental facility consisting of a molecular iodine generator, a mixing chamber, a sampling chamber, a specimen holder, and a gamma-counting probe [Cristal NaI(Tl)]. The same experimental facility was used to precisely measure the gaseous molecular iodine interactions with epoxy-painted coupons conditioned by two artificial hydrothermal treatments, either by heating at 130°C in a dry atmosphere or by heating at 130°C in a saturated water atmosphere. Then, a kinetic model was developed to represent these experimental results.This paper examines if the previous kinetic model can be used to interpret the gaseous molecular iodine interactions with aged paints. With the rate constant values found for the artificially conditioned paints, the kinetic model agrees with experimental results. Moreover, for the three studied temperatures (95, 110, and 125°C), the values of initial adsorbed water concentration onto the paint and the adsorbed water concentration in equilibrium with the steam of the carrier gas are intermediate between the values found for the two artificial hydrothermal treatments.Finally, a kinetic model is available, allowing the evaluation of precise assessments of the gaseous molecular iodine interactions with aged epoxy paints in the case of a severe PWR accident.