ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Michael D. Kaminski, Luis Nuñez, Ankur Purohit, Michael Lewandowski
Nuclear Technology | Volume 130 | Number 2 | May 2000 | Pages 184-195
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT00-A3086
Articles are hosted by Taylor and Francis Online.
Substituted-ethane diphosphonic acids are an interesting moiety of organic acids because they display particularly favorable chemical characteristics toward the selective dissolution of metal oxides. In recent years, these systems have been studied to develop a cradle-to-grave process for the decontamination of ferrous metals typical of the nuclear power industry. This paper expands the understanding of this system to the dissolution of ferrous oxides found on corroded metals of nuclear facilities.It is found that pure iron oxides such as magnetite (Fe3O4) and hematite (Fe2O3) dissolved quickly (<1 h) using 0.5 M 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) and a strong reducing agent; the oxides with slower kinetics are the spinel structures, such as the nickel ferrites (NiOFe2O3), which dissolved very slowly in the foregoing solution. These results were confirmed in bench-scale tests on actual carbon steel and radioactively contaminated stainless steel samples. The decontamination of actual stainless steel from a nuclear reactor vessel required high concentrations of both HEDPA and reducing agent. Methods for treating the spent HEDPA solution are discussed.