ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Pavel Kudinov, Aram Karbojian, Weimin Ma, Truc-Nam Dinh
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 219-230
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9460
Articles are hosted by Taylor and Francis Online.
Characteristics of corium debris beds formed in a severe core melt accident are studied in the Debris Bed Formation-Snapshot (DEFOR-S) test campaign, in which superheated binary-oxidic melts (both eutectic and noneutectic compositions) as the corium simulants are discharged into a water pool. Water subcooling and pool depth are found to significantly influence the debris fragments' morphology and agglomeration. When particle agglomeration is absent, the tests produced debris beds with porosity of [approximately]60 to 70%. This porosity is significantly higher than the [approximately]40% porosity broadly used in contemporary analysis of corium debris coolability in light water reactor severe accidents. The impact of debris formation on corium coolability is further complicated by debris fragments' sharp edges, roughened surfaces, and cavities that are partially or fully encapsulated within the debris fragments. These observations are made consistently in both the DEFOR-S experiments and other tests with prototypic and simulant corium melts. Synthesis of the debris fragments from the DEFOR-S tests conducted under different melt and coolant conditions reveal trends in particle size, particle sphericity, surface roughness, sharp edges, and internal porosity as functions of water subcooling and melt composition. Qualitative analysis and discussion reaffirm the complex interplay between contributing processes (droplet interfacial instability and breakup, droplet cooling and solidification, cavity formation and solid fracture) on particle morphology and, consequently, on the characteristics of the debris beds.