ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
B. Tourniaire, B. Spindler, M. Guillaumé
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 201-209
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-6
Articles are hosted by Taylor and Francis Online.
Heat transfer between corium pool and concrete directly governs the ablation velocity of concrete in the case of molten core-concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. Numerical tools dealing with MCCI generally consider that the ablation velocity of concrete is higher than the "velocity" of heat transfer inside the concrete so that conduction heat transfer in the basemat is not taken into account. With such modeling, concrete ablation goes on until the heat flux between the corium pool and the concrete is zero. This assumption proved to be satisfactory for high heat flux because of the low thermal diffusivity of concrete. Nevertheless, it can be discussed in cases where the heat flux between the corium and the concrete is "low" that is in the long-term phase of MCCI or in cases with a strong imbalance in the power splitting at the corium pool boundaries. In such situations, the heat transfer by conduction in the concrete is no longer negligible and can lead to the end of the concrete ablation. Heat conduction in the concrete could be taken into account by solving multi-dimensional transient heat transfer equations in the concrete. A spatial meshing of the basemat is then necessary, but such an approach is time-consuming. That is why a simplified one-dimensional transient approach has been chosen and implemented in the TOLBIAC-ICB code. The main purpose of this paper is to present this approach. The validation has been performed by comparing the results of this method with experimental data obtained from studying the thermal response of polymethylmetacrylate and concrete to a heat flux. Results of the model are also compared to the solutions obtained by the numerical resolution of the discretized heat transfer equation on a fine mesh. Finally, an application to the reactor case is proposed.