ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
G. F. Kessinger, M. C. Thompson
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 263-270
Technical Paper | Reprocessing | doi.org/10.13182/NT10-A9378
Articles are hosted by Taylor and Francis Online.
The primary goal of this investigation was to evaluate the effectiveness of the chop-leach process, with nitric acid solvent, to produce a nominally 300 g/l [U] and 1 M [H+] product solution. The results of this study show that this processing technique is appropriate for applications in which a low free acid and moderately high U content are desired. The 7.75 l of product solution, which was >450 g/l in U, was successfully diluted to produce [approximately]13 l of solvent extraction feed that was 302 g/l in U with a [H+] in the range 0.8 to 1.2 M.A secondary goal was to test the effectiveness of this treatment for the removal of actinides from Zircaloy cladding to produce a low-level radioactive waste (LLW) cladding product. Analysis of the cladding shows that actinides are present in the cladding at a concentration of [approximately]5000 Ci/g, which is about 50 times greater than the acceptable transuranium element limit in LLW.It appears that the concentration of nitric acid used for this dissolution study (initial concentration 4 M, with 10 M added as the dissolution proceeded) was inadequate to completely digest the UO2 present in the spent fuel. The mass of insoluble material collected from the initial treatments with nitric acid, 340 g, was much higher than expected, and analysis of this insoluble residue showed that it contained at least 200 g U.