ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Jamil A. Khan, Travis W. Knight, Sujan B. Pakala, Wei Jiang, Ruixian Fang, James S. Tulenko
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 61-72
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A9343
Articles are hosted by Taylor and Francis Online.
The thermal conductivity of the fuel in today's light water reactors, uranium dioxide (UO2), can be improved by incorporating a uniformly distributed heat-conducting network of a higher-conductivity material: silicon carbide (SiC). The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% theoretical density). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and development of a formal methodology for producing the resultant composite oxide fuel. Calculations of the effective thermal conductivity (ETC) of the new fuel as a function of percent SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The ETCs are obtained at different temperatures from 600 to 1600 K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. The heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for the thermal conductivity calculations and to estimate the reduction in centerline temperatures achievable within such a fuel rod. Later, the computer codes COMBINE-PC and VENTURE-PC were employed to estimate the fuel enrichment required to maintain the same burnup levels corresponding to a volume percent addition of SiC.