ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Charles T. Kelsey IV, Guenter Muhrer, Eric J. Pitcher
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 957-964
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Materials for Nuclear Systems | doi.org/10.13182/NT09-A9333
Articles are hosted by Taylor and Francis Online.
Radionuclide inventory calculations support design and accident analyses for the Materials Test Station (MTS). MTS is a spallation source facility being designed to irradiate reactor fuels and materials in a fast neutron spectrum. Calculated radionuclide inventories are used to provide decay heat input to cooling system design, decay radiation source terms for hot cell design, and material-at-risk input to accident analyses. CINDER'90 is a transmutation code that uses MCNPX-calculated spallation product yields and neutron fluxes to calculate residual nuclide concentrations based on irradiation history. The code also calculates decay heat and photon spectra for the resulting radionuclide inventories. A total activity of 2 × 1017 Bq is created during MTS operation. Decay heat is an important factor since in loss of primary cooling scenarios, this heat must be removed. The major sources at shutdown are 3000 W for the tungsten target plates and 6000 W for fuel pins being irradiated. Decay photon spectra result in unshielded dose rates that hot cell design must accommodate on the order of 1000 Sv/h. The MTS design includes lead-bismuth eutectic (LBE) coolant. For accident analysis 210Po activity in the LBE is a significant concern. The calculated 210Po activity following 2.5 yr of operation is 2 × 1014 Bq. Radionuclide inventory calculations are important for MTS design. The CINDER'90 code is a valuable tool for this purpose.