ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Egidio Mauro, Marco Silari, Heinz Vincke
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 888-893
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9323
Articles are hosted by Taylor and Francis Online.
CERN is at present designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160-MeV room-temperature linear accelerator (linac) (Linac4) to replace the present 50-MeV linac injector, a 3.5-GeV superconducting proton linac (SPL) to replace the 1.4-GeV PS booster, and a 50-GeV synchrotron to replace the 26-GeV PS. Linac4 has been funded, and civil engineering will start soon, while the SPL is in an advanced stage of design. Beyond injecting into the future 50-GeV PS, the ultimate goal of the SPL is to generate a 4-MW beam to produce intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted so far for Linac4. The calculations of the shielding, access maze, ducts for cables, waveguides, and ventilations were performed with the FLUKA Monte Carlo code, complemented by analytical estimates.