ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Ivan Strasik, Ekaterina Kozlova, Edil Mustafin, Ingo Hofmann, Andrey Smolyakov, Nikolai Sobolevsky, Ludmila Latysheva, Marius Pavlovic
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 643-647
Accelerators | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9282
Articles are hosted by Taylor and Francis Online.
Quantification of residual activity is an important issue for high-power accelerator facilities like the Facility for Antiprotons and Ion Research (FAIR). While beam losses of 1 W/m are at present accepted for proton machines as a tolerable level for ensuring "hands-on" maintenance, the beam-loss tolerances for high-energy heavy-ion accelerators have not yet been quantified. The Monte Carlo particle transport codes FLUKA and SHIELD were used to simulate the irradiation of copper and stainless steel by different ions (1H, 4He, 12C, 20Ne, 40Ar, 84Kr, 132Xe, 197Au, and 238U) with energies typical for FAIR machines. Copper and stainless steel were chosen as common materials for accelerator structures. The isotope inventory contributing >90% to the total residual activity does not depend on the projectile species; it depends only on the target material and projectile energy. The activity per watt induced by a 1 GeV/u heavy ion is lower than the activity per watt induced by a 1-GeV proton. A tolerable beam-loss level for a 1 GeV/u 238U beam was found to be [approximately]5 W/m.