ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
Josselin Morand, Reinhard Hentschel, Andrea Wittig, Raymond Moss, Sabet Hachem, Yuan-Hao Liu, Wolfgang Sauerwein
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 456-461
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9224
Articles are hosted by Taylor and Francis Online.
Monte Carlo simulation of accelerated ions is a standard method in radiation protection. Such simulations have been used to calculate photon and neutron production in a beryllium target of the Essen d(14)+Be Fast Neutron Therapy Facility. In the deuteron case the predominant part of the neutrons is produced by breakup of the input particle, a decay that is not foreseen in standard versions of Monte Carlo codes. Thus, the calculation yields results that are different from measured ones. For simulations of the neutron beam at such facilities, an input description containing the spectral and geometric properties of the neutron and eventually photon beams produced in the target is needed. For the Essen neutron beam, such a description has been obtained by comparison of MCNPX simulations with published data and measurements at a static beam geometry having no background radiation. The validation of the neutron beam input description was obtained by comparing measured and calculated dose distributions in a water phantom using a standard collimator at the treatment gantry.