ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Joshua J. Jarrell, Marvin L. Adams, Joel M. Risner
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 424-430
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT168-424
Articles are hosted by Taylor and Francis Online.
A widely used numerical method for discretizing the direction variable in the transport equation is the discrete ordinates technique. Here, we test various discrete ordinates quadrature sets on two three-dimensional (3-D) (X-Y-Z) shielding problems: the doglegged void neutron model and the pool critical assembly model. Commonly used quadrature sets, including the standard level symmetric sets and double Gauss-Chebyshev sets, produce significant ray effects associated with material discontinuities in both models. Abu-Shumays designed the quadruple range (QR) sets specifically for these types of problems and showed that they perform well in two-dimensional X-Y geometry. Here, we show that compared to more commonly used quadrature sets, the 3-D QR sets substantially reduce ray effects associated with material discontinuities in 3-D X-Y-Z discrete ordinates calculations.