ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NRC completes environmental review of Dresden SLR
The Nuclear Regulatory Commission has found that the environmental impacts of renewing the operating license of the Dresden nuclear power plant outside Chicago, Ill., for an additional 20 years are not great enough to prohibit doing so.
R. J. Sheu, J. Liu, J. P. Wang, K. K. Lin, G. H. Luo
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 417-423
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9219
Articles are hosted by Taylor and Francis Online.
This study investigates the characteristics of the prompt radiation field due to the operation of the proposed Taiwan Photon Source (TPS). Two extreme beam loss cases are considered to bound the possible beam loss scenarios in the tunnel; i.e., all electrons are lost at one point, or they are lost uniformly along the whole electron orbit. Energy spectra and dose distributions of the prompt radiation field for the shielding design of the TPS are studied using analytic estimations and Monte Carlo simulations. The radiation levels of photons and neutrons outside the shielding wall are estimated for various operation modes and beam loss scenarios. The calculated results show that the preliminary shielding design of the TPS is highly practicable to achieve its annual design dose limit of 1 mSv for personnel. Meanwhile, the radiation impact on the environment is also far below the regulatory requirement.