ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Hesham Khater, Sandra Brereton, Mike Singh
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 381-386
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9213
Articles are hosted by Taylor and Francis Online.
Prompt doses from X-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility. The maximum dose outside a target chamber diagnostic port is [approximately]10 mSv for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (eight laser beams) drops to [approximately]0.4 mSv. Doses calculated outside the target bay (TB) doors and inside the switchyards (SYs) [except for the 5.33-m (17-ft 6-in.) floor level] range from a few microsieverts to [approximately]110 Sv for 192 beams and scale down proportionally with a smaller number of beams. At the 5.33-m (17-ft 6-in.) floor level, two diagnostic ports are directly facing two of the TB doors, and the maximum doses outside the doors are 0.5 and 0.16 mSv, respectively. Shielding each of the two TB doors with 6.35-mm-thick Pb (¼-in.) reduces the dose by a factor of 50. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the SYs.