ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
I. Murata, H. Miyamaru, I. Kato, S. Yoshida, Y. Mori
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 373-377
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9212
Articles are hosted by Taylor and Francis Online.
Accelerator-based neutron sources are being developed worldwide. In a neutron source, it is essential to know the characteristics of the field including neutrons and gamma rays. However, for the neutron, it is still difficult to measure the energy spectrum below 10 keV. In the present study, a low-energy neutron spectrometer has been designed and developed to examine the accelerator-based neutron source performance. The proposed spectrometer will finally cover neutron energy from the thermal-to-kilo-electron-volt region and is based on a 3He proportional counter. It is positioned in parallel with the incident neutron beam, and the reaction depth distribution is measured. Since the reaction depth distribution varies depending on the incident neutron energy, it can be converted to the neutron energy spectrum. The spectrometer is 50 cm long × 5 cm in diameter with a gas pressure of 0.5 MPa. Recently, a prototype detector was completed, and the signal test is now in progress. The preliminary test result has described the present spectrometer availability as a low-energy neutron spectrometer for an accelerator-based neutron source. Because this kind of spectrometer did not exist heretofore, the spectrometer can be applied to neutron source facilities, e.g., proton accelerators like the Japan Proton Accelerator Research Complex (J-PARC) and nuclear reactors as well as accelerator-based neutron sources for boron neutron capture therapy like the fixed field alternating gradient-emittance-energy recovery internal target (FFAG-ERIT).