ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. Chiriki, J. Fachinger, R. Moormann, H.-K. Hinssen, A. Bukaemskiy, R. Odoj
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 264-269
Neutron Data | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Decontamination/Decommissioning | doi.org/10.13182/NT09-A9192
Articles are hosted by Taylor and Francis Online.
Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and European Spallation Source). These facilities accumulate more than 20 tonnes of irradiated mercury in the target, which has to be treated as highly radioactive and chemotoxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste, solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide, a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg conversion. Embedding HgS in a cementitious matrix increases its stability.