ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Venkata V. R. Venigalla, Miles Greiner
Nuclear Technology | Volume 167 | Number 2 | August 2009 | Pages 313-324
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A8966
Articles are hosted by Taylor and Francis Online.
A two-dimensional finite volume mesh of a legal-weight truck cask cross section is constructed, including four pressurized water reactor fuel assemblies inside. Computational fluid dynamics (CFD) simulations calculate buoyancy-driven gas motion, natural convection and radiation heat transfer in geometrically accurate gas-filled fuel regions, and conduction within the solid components. Steady-state simulations are performed with the cask in a normal transportation environment for ranges of fuel heat generation rate and cladding emissivity, with atmospheric-pressure helium or nitrogen cover gases. The cask thermal dissipation capacity is defined as the fuel heat generation rate that brings the fuel cladding temperature to its allowed limit. That capacity is 23% higher when helium is the cover gas than for nitrogen. Increasing the cladding emissivity by 10% increases the capacity by 4% for nitrogen, but only 2% for helium. Stagnant-gas simulations using the geometrically accurate mesh predict essentially the same cask thermal dissipation capacity as simulations that include gas motion. This indicates that buoyancy-induced gas motion is not strong enough to significantly enhance heat transfer for this configuration. Simulations employing effective thermal conductivities and homogenized (nongeometrically accurate) meshes in the fuel regions predict cask thermal capacities that are 3 to 8% lower than the geometrically accurate CFD simulations. Basket surface temperatures calculated in this work will be used as boundary conditions in future benchmark experiments.