ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC finishes draft supplemental EIS for Clinch River SMR site
The Nuclear Regulatory Commission and the U.S. Army Corps of Engineers have completed a draft supplemental environmental impact statement for a small modular reactor at the Tennessee Valley Authority’s Clinch River nuclear site in Oak Ridge, Tenn.
Roberta Concilio Hansson, Hyun Sun Park, Truc-Nam Dinh
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 223-234
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8864
Articles are hosted by Taylor and Francis Online.
The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident, involving interactions of high-temperature corium melt and volatile coolant. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the Micro-Interactions in Steam Explosion Experiments (MISTEE) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called Simultaneous High-speed Acquisition of X-ray Radiography and Photography (SHARP). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics) and their microscale interactions. The analysis of the data shows a deficiency in using the bubble dynamics alone to provide a consistent explanation of the energetic behavior. In contrast, the SHARP data reveal a correlation between the droplet's dynamics in the bubble's first cycle and the energetics of the subsequent explosive evaporation in the bubble's second cycle. The finding provides a basis to suggest that a so-called melt-droplet preconditioning, i.e., deformation/prefragmentation of a hot melt droplet immediately following the pressure trigger, is instrumental to the subsequent coolant entrainment, evaporation, and energetics of the resulting vapor explosion.