ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
M. C. Galassi, D. Bestion, C. Morel, J. Pouvreau, F. D'Auria
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 60-70
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8851
Articles are hosted by Taylor and Francis Online.
This work presents a validation of NEPTUNE_CFD against plunging water jet experiments by Iguchi et al., with sensitivity tests to turbulence modeling. NEPTUNE_CFD is the thermal-hydraulic two-phase computational fluid dynamics tool of NURESIM (European Platform for Nuclear Reactor Simulations) and is designed to simulate two-phase flow in situations encountered in nuclear power plants. Iguchi et al.'s flow configuration shares common physical features with the emergency core cooling injection in a pressurized water reactor uncovered cold leg during a small-break loss-of-coolant accident. This work contributes to the validation of the NEPTUNE_CFD code capability to predict the turbulence below a free surface produced by a plunging jet. In the experiment, the water was injected vertically down a straight circular pipe into a cylindrical vessel containing water. Mean velocity and turbulent fluctuations were measured below the jet at several depths below the free surface. The influence of several models on code predictions was investigated, and both standard and modified turbulence models were tested. A single-phase jet case was also simulated and compared with both measurements and two-phase calculations, to investigate bubble entrainment influence on turbulence prediction. The calculated mean velocity field was always in quite good agreement with the experimental data, while the turbulence intensity was generally good with some underestimation far from the jet axis region.