ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Holtec to provide sheltered spent fuel storage in Taiwan
Holtec International announced that it has been awarded a turnkey supply contract by Taiwan Power Company (TPC) to establish indoor dry spent nuclear fuel storage facilities at both the closed Chinshan and Kuosheng nuclear power plant sites on the island nation.
Seungjin Kim, Kennard Callender, Gunol Kojasoy
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 20-28
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8848
Articles are hosted by Taylor and Francis Online.
The present study develops an interfacial area transport equation applicable to an air-water horizontal bubbly flow with a flow restriction. The experiments are performed in a round glass pipe of 50.3-mm inner diameter, along which a 90-deg elbow is installed at L/D = 206.6 from the two-phase mixture inlet. In total, 15 different flow conditions in the bubbly flow regime are studied. The detailed local two-phase flow parameters are acquired by a double-sensor conductivity probe at four different axial locations. The effect of the elbow is evident in the distribution of local parameters as well as in the development of interfacial structures. The elbow clearly promotes bubble interactions resulting in significant changes in both the void fraction and interfacial area concentration. In the present study, the elbow is found to promote the coalescence mechanism while reducing the disintegration mechanism. These geometric effects are also reflected in the axial development of one-dimensional two-phase flow parameters. In the present analysis, the interfacial area transport equation is developed in one-dimensional form via area-averaging based on the existing model for vertical flow. In the averaging process, characteristic nonuniform distributions of the two-phase flow parameters in horizontal two-phase flow are treated mathematically by covariance calculations. Furthermore, the change in pressure due to the minor loss of the elbow is taken into consideration by using a newly developed correlation analogous to Lockhart and Martinelli's. In total, 60 area-averaged data points are employed to benchmark the present model. The present model predicts the data well with an average percent difference of approximately ±10%.