ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Min Chull Kim, Inn Seock Kim
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 283-294
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT08-39
Articles are hosted by Taylor and Francis Online.
The analytic hierarchy process (AHP) provides a decision-analysis framework to model unstructured problems in almost every kind of discipline, whether social science, aerospace engineering, or nuclear reactor safety analysis. As common-cause failure (CCF) has been a major element of incidents and accidents in terrestrial nuclear power reactors because of high redundancy built into the systems and susceptibility of these redundant systems to CCF mechanisms, ad hoc approaches used to be taken to address vulnerabilities to CCF by designers or operating staff of the plants. We show in this paper how the AHP in conjunction with goal-tree success-tree (GTST) methodology can be used to identify an optimal CCF-defense strategy under various constraints (e.g., the largest safety impact, the smallest cost, and the least operator burden). This work demonstrates applicability and effectiveness of the AHP decision-analysis technique in CCF-defense assessment with a novel introduction of the GTST methodology as a tool to construct a hierarchical decision tree for the AHP. The combined approach based on AHP and GTST methodologies can be used not only for CCF-defense assessment but also for any other multicriteria decision analysis requiring priority setting.