ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Min Chull Kim, Inn Seock Kim
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 283-294
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT08-39
Articles are hosted by Taylor and Francis Online.
The analytic hierarchy process (AHP) provides a decision-analysis framework to model unstructured problems in almost every kind of discipline, whether social science, aerospace engineering, or nuclear reactor safety analysis. As common-cause failure (CCF) has been a major element of incidents and accidents in terrestrial nuclear power reactors because of high redundancy built into the systems and susceptibility of these redundant systems to CCF mechanisms, ad hoc approaches used to be taken to address vulnerabilities to CCF by designers or operating staff of the plants. We show in this paper how the AHP in conjunction with goal-tree success-tree (GTST) methodology can be used to identify an optimal CCF-defense strategy under various constraints (e.g., the largest safety impact, the smallest cost, and the least operator burden). This work demonstrates applicability and effectiveness of the AHP decision-analysis technique in CCF-defense assessment with a novel introduction of the GTST methodology as a tool to construct a hierarchical decision tree for the AHP. The combined approach based on AHP and GTST methodologies can be used not only for CCF-defense assessment but also for any other multicriteria decision analysis requiring priority setting.