ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Nader M. A. Mohamed
Nuclear Technology | Volume 166 | Number 2 | May 2009 | Pages 187-196
Technical Papers | Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A7405
Articles are hosted by Taylor and Francis Online.
A procedure was developed for measuring the concentration of copper, in the Instrumental Neutron Activation Analysis method, by measuring the produced 64Cu isotope activity (after irradiation) from the annihilation peak (511-keV peak). In this procedure the number of counts under the annihilation peak is divided into two categories: (a) counts coming from the decay of the 64Cu isotope and (b) counts coming from the interactions of energetic photons (with energies >1.022 MeV, the pair production threshold) with the detector and surrounding materials. The last category is evaluated and subtracted from the annihilation peak counts, and the rest of the counts are used to calculate the activity of 64Cu. Measuring copper concentration using this method will improve its detection limit. The method was validated by measuring the concentration of copper in four International Atomic Energy Agency (IAEA) reference materials: Soil-7, Lake Sediment, Human Hair, and Hay Powder. The maximum deviation between the results and that given in IAEA certificates is 4.4%. The method decreased the detection limits of the four samples to ~3, ~4.5, ~0.6, and ~1 mg/kg, respectively.