ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A. R. Massih
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 992-1001
Technical Note | doi.org/10.1080/00295450.2019.1568102
Articles are hosted by Taylor and Francis Online.
Oxidation of UO2 fuel under off-normal and normal reactor conditions occurs when fuel cladding fails, thereby allowing steam/water to enter the fuel rod. The steam/water will react with the fuel to produce UO2+x thus releasing hydrogen, with x standing for the amount of interstitial oxygen ions above the stoichiometric value.
In this technical note the impact of fuel oxidation on fission gas release (FGR) is modeled and discussed. The classical diffusion equation is used to describe migration and release of fission product gas (Xe) in UO2+x under time-varying postirradiation annealing conditions. We assume that the main quantity affected by fuel oxidation is the effective diffusivity of fission gas. Fuel oxidation enhances the diffusivity as a function of x in UO2+x in a parabolic fashion for 0.005 ≤ x ≤ 0.12 in the temperature range of 1000 ≤ T ≤ 1600 K. We first benchmark our model against an annealing test in which for x = 0.004 the Xe release fraction was measured as a function of time (temperature) during annealing. Furthermore, we apply the model to simulate a series of postirradiation annealing tests on UO2+x fuel, in which FGR fractions were measured for a given thermal ramp history in the range 0.00 ≤ x ≤ 0.66. The results of our computations in the range 0.004 ≤ x ≤ 0.20 show good agreement with measurements.