ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Sellafield awards $6B ‘high hazard risk reduction’ framework contract
Sellafield Ltd., the site license company overseeing the decommissioning of the United Kingdom’s Sellafield nuclear site in Cumbria, England, has awarded a 15-year framework contract worth up to £4.6 billion ($6 billion) to support “high hazard risk reduction programs” at the site.
William Boyd, Adam Nelson, Paul K. Romano, Samuel Shaner, Benoit Forget, Kord Smith
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 928-944
Regular Technical Paper | doi.org/10.1080/00295450.2019.1571828
Articles are hosted by Taylor and Francis Online.
High-fidelity deterministic transport codes require highly accurate multigroup cross sections (MGXS). Monte Carlo is increasingly cited as a reactor-agnostic approach to MGXS generation since it is unconstrained by the engineering-based approximations that limit the applicability of deterministic MGXS generation tools. This paper introduces a new framework that uses the OpenMC Monte Carlo code to generate MGXS for use in multigroup transport codes. The openmc.mgxs module is built atop OpenMC’s Python application programming interface to process tally data output by the OpenMC executable. This paper validates the module to generate MGXS that enable the multigroup OpenMOC transport code to compute eigenvalues to within 50 pcm and fission rates to within 1% of reference solutions for two heterogeneous pressurized water reactor benchmarks.