ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Wei Xu, Jianhua Xia, Xiaojing Liu, Xu Cheng, Wei Zeng
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 281-296
Technical Paper | doi.org/10.1080/00295450.2018.1457887
Articles are hosted by Taylor and Francis Online.
Bottom reflooding is the third phase when a large-break loss-of-coolant accident occurs. Due to the complexity and importance, especially in a distinct narrow rectangular channel, various research methods can be utilized to understand the whole process. Test facility is established to figure out the thermal-hydraulic behaviors during bottom reflooding, and the acquisition of accurate solid temperature is essential. The inverse heat transfer problem method is applied to take full advantage of experimental data. In addition, a bottom reflooding transient (BRT) code is utilized to calculate various parameters conveniently. A three-dimensional heat conduction equation for a transient state is solved implicitly to obtain solid temperature distribution, surface heat flux, and heat transfer coefficient at the cooling surface. The simulation results of the BRT code are compared with that of RELAP5, an available system code, and the experimental results. A conclusion that can be derived is that the BRT code shows good applicability of simulating bottom reflooding in a narrow rectangular channel.