ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Matthieu A. André, Ross A. Burns, Paul M. Danehy, Seth R. Cadell, Brian G. Woods, Philippe M. Bardet
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 262-271
Technical Paper | doi.org/10.1080/00295450.2018.1516954
Articles are hosted by Taylor and Francis Online.
Molecular tagging velocimetry (MTV) is a nonintrusive velocimetry technique based on laser spectroscopy. It is particularly effective in challenging gas flow conditions encountered in thermal hydraulics where particle-based methods such as particle image (or tracking) velocimetry do not perform well. The main principles for designing and operating this diagnostic are presented as well as a set of gases that have been identified as potential seeds. Two gases [H2O and nitrous oxide (N2O)] have been characterized extensively for thermodynamic conditions ranging from standard temperature and pressure to environments encountered in integral effects test (IET) facilities for high-temperature gas reactors. A flexible, modular, and transportable laser system has been designed and demonstrated with H2O and N2O seed gases. The laser system enables determining the optimum excitation wavelength, tracer concentration, and timing parameters. Velocity precision and thermodynamic domain of applicability are discussed for both tracers. The spectroscopic nature of the diagnostics enables one to perform first-principle uncertainty analysis, which makes it attractive for validating numerical models.
Molecular tagging velocimetry is demonstrated for two flows. First, in blowdown tests with H2O seed, the unique laser system enables one of the largest dynamic ranges reported to date for velocimetry: 5000:1 (74 dB). N2O-MTV is then deployed in situ in an IET facility, i.e., the High-Temperature Test Facility at Oregon State University, during a depressurized conduction cooldown (DCC) event. Data enable researchers to gain insights into flow instabilities present during DCC. Thus, MTV shows a strong potential to gain a fundamental understanding of gas flows in nuclear thermal hydraulics and to provide validation data for numerical solvers.