American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 205 / Number 1-2

Effects of Substrate Materials and Surface Conditions on the Minimum Film-Boiling Temperature

Shikha A. Ebrahim, Ece Alat, Faruk A. Sohag, Valerie Fudurich, Shi Chang, Fan-Bill Cheung, Stephen M. Bajorek, Kirk Tien, Chris L. Hoxie

Nuclear Technology / Volume 205 / Number 1-2 / January-February 2019 / Pages 226-238

Technical Paper / dx.doi.org/10.1080/00295450.2018.1490122

Received:March 27, 2018
Accepted:June 14, 2018
Published:December 12, 2018

Film boiling is an important phenomenon in the evaluation of an emergency core cooling system following a hypothetical loss of coolant accident in a nuclear reactor. This study investigates the effects of liquid subcooling, surface oxidation, and surface materials on the minimum film-boiling temperature . Quenching experiments were performed using stainless steel and zirconium (Zr) test samples. The samples were heated to a temperature well above then plunged vertically in various degrees of liquid subcooling pools. A visualization study using a high-speed camera was conducted to capture the quenching behavior. Additionally, surface characterization analyses including X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy were performed to quantify the surface conditions. Results indicate that liquid subcooling has a strong influence on . The visualization study shows a very thin vapor formation around the test sample for higher subcooling pools which explains the enhancement in the heat transfer. It is observed from the surface characterization analyses that the variations in the surface condition of the stainless steel and Zr causes the vapor bubbles to depart differently in the nucleate boiling regime. Furthermore, the effect of surface oxidation is clearly noticeable in the Zr test sample compared to the stainless steel test sample due to the oxidation kinematic of each substrate material. It is found that the substrate thermophysical properties have a significant impact on . Comparing the bare substrates shows that for the same degrees of liquid subcooling pool, the value of for the Zr sample is ∼30°C to 60°C higher compared to the stainless steel sample. Moreover, increasing the degrees of liquid subcooling contributes to a significant increase in that varies between ∼50°C and 70°C for both samples.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement