ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Cole Gentry, Kang Seog Kim, G. Ivan Maldonado
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 299-317
Technical Paper | doi.org/10.1080/00295450.2018.1486158
Articles are hosted by Taylor and Francis Online.
This paper presents the development of a lattice physics–to–core simulator two-step procedure for the rapid analysis of the Advanced High Temperature Reactor (AHTR). Lattice physics, reflector, and control blade models were developed from which cross-section libraries could be generated for a nodal core simulator. Few-group structures for the core simulator were also generated to account for the neutronic characteristics of AHTR. After developing the AHTR two-step procedure, cross-section libraries were generated using the SERPENT continuous-energy Monte Carlo code. These libraries were then used in the core simulator NESTLE to perform full-core calculations, which were in turn benchmarked against reference SERPENT full-core models. Benchmarking results showed reasonable accuracy of the developed two-step procedure but revealed an inherent inadequacy in the one-dimensional radial reflector model and showed a likely need for a greater number of energy groups than were used in this study.