ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Donna Post Guillen, Alexander W. Abboud, Richard Pokorny, William C. Eaton, Derek Dixon, Kevin Fox, Albert A. Kruger
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 244-260
Technical Paper | doi.org/10.1080/00295450.2018.1458559
Articles are hosted by Taylor and Francis Online.
Integrated models are being developed to represent the physics occurring within the high-level and low-activity waste melters that will be used to vitrify legacy tank waste at the Hanford site. These models couple the melt pool, cold cap, and plenum region within a single computational domain. Validation of the models is essential to ensure the reliability of the numerical predictions of the operational melters. Experimental data from laboratory- and pilot-scale tests are thus being used to inform and validate various aspects of the melter model. This paper presents a tiered approach to model validation consisting of a series of progressively more complex test cases designed to model the physics occurring in the full-scale system. A hierarchical methodology has been developed to segregate and simplify the physical phenomena affecting the multiphase flow and heat transfer within a waste glass melter. Four hierarchical levels are defined in a validation pyramid and built up in levels of increasing complexity from unit problems to subsystem cases, to pilot-scale systems, and then to the full-scale system.