ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jeremy M. Osborn, Evans D. Kitcher, Jonathan D. Burns, Charles M. Folden, III, Sunil S. Chirayath
Nuclear Technology | Volume 201 | Number 1 | January 2018 | Pages 1-10
Technical Paper | doi.org/10.1080/00295450.2017.1401442
Articles are hosted by Taylor and Francis Online.
A nuclear forensics methodology has been developed that is capable of source attribution of separated weapons-grade plutonium in case of an interdiction. The methodology utilizes plutonium and contaminant fission product isotopes within the separated plutonium sample to determine the characteristics (reactor parameters) of the interdicted material. The reactor parameters of interest include source reactor type, fuel irradiation burnup, and time since irradiation. The MCNPX-2.7 radiation transport code was used to model reactor cores and perform neutronics simulations to estimate the resulting isotopes of irradiated UO2 fuel. The simulation results were used to create a reactor-dependent library of irradiated fuel isotope ratio values as a function of fuel burnup and time since irradiation. Ratios of intra-element isotopes (fission product or actinide) are used as characteristics to determine a combination of reactor parameters of interest that could have produced the interdicted sample. The isotopes selected for the attribution methodology development were based upon the initial criteria of isotope production yield in fuel and half-life. Subsequently, intra-element isotope ratios were formed with the criterion that the ratio must have a functional dependence on at least one of the reactor parameters of interest. The developed methodology compares the values of reactor-dependent intra-element isotope ratios in the library developed to the same ratios of the interdicted sample. A maximum likelihood calculation methodology was utilized to perform the aforementioned multiple intra-element isotope ratio comparison to produce a single metric to depict the result of the comparison. The methodology can predict the reactor type, fuel burnup, and time since irradiation of the sample by selecting the array of reactor-dependent intra-element isotope ratios that provides the maximum likelihood value. The methodology was tested with intra-element ratios of pseudo interdicted sample data and found to be viable for source attribution.