ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jessica A. Mitchell, R. M. Counce, J. S. Watson, B. B. Spencer, G. D. Del Cul
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 360-369
Technical Paper | Reprocessing | doi.org/10.13182/NT09-A4107
Articles are hosted by Taylor and Francis Online.
This study explores different technologies for removing acetic acid from a UREX+ waste stream. The waste stream contains both nitric and acetic acids, and the acetic acid must be removed from the waste stream to prevent potential problems in the downstream steps as well as affecting the recycle of nitric acid. The acetic acid is formed after the UREX step of the process as a result of hydrolytic degradation of acetohydroxamic acid used to suppress plutonium extraction. Of the available technologies, the two most attractive approaches are solvent extraction and distillation. In industry, solvent extraction is used for more dilute concentrations of acetic acid while distillation is used for concentrated acetic acid. If a liquid-liquid extraction is viable, this would be the best option with the addition of an extractant, like tributyl phosphate or tri-n-octyl amine, if needed. However, if acetic acid removal can be delayed until the end of the UREX+ process when the nitric acid may be concentrated for recycle, distillation may remain an option, though not necessarily a better option than solvent extraction.