ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Peiwei Sun, Ji Feng, Xianbao Yuan, Liang Zhao, Furong Liu
Nuclear Technology | Volume 199 | Number 1 | July 2017 | Pages 35-46
Technical Paper | doi.org/10.1080/00295450.2017.1322396
Articles are hosted by Taylor and Francis Online.
The Canadian SuperCritical Water-cooled Reactor (SCWR) is a once-through pressure tube–type SCWR under development in Canada. It is a multivariable system with strong cross coupling and a high degree of nonlinearity. The outputs are sensitive to disturbances, and the variations in the thermal parameters should be limited to avoid thermal stress to its components. Therefore, designing an adequate control system is challenging. In this paper, robust multivariable feedback control and feedforward control are proposed to design the control system of the Canadian SCWR. Three uncertainty sources are considered: unmodeled uncertainty, linearization uncertainty, and model reduction uncertainty. These uncertainties are evaluated taking into account all aspects affecting the linear dynamic model used in the robust controller synthesis, and the uncertainty bounds are determined to cover the uncertainties. The robust feedback controller is synthesized using the μ-synthesis approach. The feedforward control is added to the robust feedback control to further improve the control performance. It is obtained through disturbance compensation features for a feedforward controller. The control performance of the hybrid control system is evaluated based on the nonlinear simulation by introducing different setpoint changes. The designed control system can stabilize the Canadian SCWR, and the control performance is satisfactory.