ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
V. Subramanian, P. Sahoo, N. Malathi, R. Ananthanarayanan, R. Baskaran, B. Saha
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 257-269
Technical Paper | Fission Reactors | doi.org/10.13182/NT09-A4100
Articles are hosted by Taylor and Francis Online.
In the context of safety analysis of fast reactors, information on chemical speciation of sodium aerosol formed due to sodium fire is important. Clough and Garland studied theoretically the formation of NaOH and Na2CO3. Hofmann et al. and Cherdron and Jordan reported their experimental results on chemical speciation of sodium aerosols after certain periods of exposure to atmosphere based on wet chemical analysis. It is difficult to obtain quantitative information on chemical species present in dilute solutions by conventional chemical analysis. Appropriate chemical instrumentation is needed for this purpose, the development of which, along with the methodology adopted for chemical speciation, is discussed in this paper. The present technique provides rapid information on the composition of species as a function of time following a sodium fire. Experiments were conducted in the Aerosol Test Facility (ATF) in which sodium aerosols were generated, collected on filter papers, dissolved in water, and subjected to chemical characterization using a laboratory-developed high-resolution conductometric titration facility. The titration plots revealed the presence of NaOH and Na2CO3 as the two major components in the dissolved aqueous solutions. The concentrations of these species were derived with due consideration of the hydrolysis of Na2CO3 in water. It was possible to relate these concentrations to the compositions of the samples on the filter paper residues through a separate series of measurements on the dissolved solutions of the synthetic mixtures of NaOH and Na2CO3 of known compositions in the solid phase. It has been confirmed by our experimental results that for the initial mass concentration of the aerosol at ~2 gm-3 and in a confined environment of 1 m3, at a relative humidity of 50 to 65%, the entire species of sodium compound aerosol becomes sodium carbonate within 500 s from the onset of fire.