ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
V. Subramanian, P. Sahoo, N. Malathi, R. Ananthanarayanan, R. Baskaran, B. Saha
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 257-269
Technical Paper | Fission Reactors | doi.org/10.13182/NT09-A4100
Articles are hosted by Taylor and Francis Online.
In the context of safety analysis of fast reactors, information on chemical speciation of sodium aerosol formed due to sodium fire is important. Clough and Garland studied theoretically the formation of NaOH and Na2CO3. Hofmann et al. and Cherdron and Jordan reported their experimental results on chemical speciation of sodium aerosols after certain periods of exposure to atmosphere based on wet chemical analysis. It is difficult to obtain quantitative information on chemical species present in dilute solutions by conventional chemical analysis. Appropriate chemical instrumentation is needed for this purpose, the development of which, along with the methodology adopted for chemical speciation, is discussed in this paper. The present technique provides rapid information on the composition of species as a function of time following a sodium fire. Experiments were conducted in the Aerosol Test Facility (ATF) in which sodium aerosols were generated, collected on filter papers, dissolved in water, and subjected to chemical characterization using a laboratory-developed high-resolution conductometric titration facility. The titration plots revealed the presence of NaOH and Na2CO3 as the two major components in the dissolved aqueous solutions. The concentrations of these species were derived with due consideration of the hydrolysis of Na2CO3 in water. It was possible to relate these concentrations to the compositions of the samples on the filter paper residues through a separate series of measurements on the dissolved solutions of the synthetic mixtures of NaOH and Na2CO3 of known compositions in the solid phase. It has been confirmed by our experimental results that for the initial mass concentration of the aerosol at ~2 gm-3 and in a confined environment of 1 m3, at a relative humidity of 50 to 65%, the entire species of sodium compound aerosol becomes sodium carbonate within 500 s from the onset of fire.