ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Hidemasa Yamano, Yu-Ichi Onoda, Yoshiharu Tobita, Ikken Sato
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 145-165
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4082
Articles are hosted by Taylor and Francis Online.
In the TPA2 test of the CABRI-RAFT program, which is part of a fast reactor safety study, fuel-to-steel heat transfer characteristics within a molten fuel/steel mixture system have been investigated. This test was performed in the French CABRI reactor and used a test capsule that contained fresh 12.3%-enriched UO2 pellets with embedded stainless steel balls. Following a preheating phase, the capsule was subjected to a transient overpower that resulted in fuel melting and steel vaporization. The observed steel vapor pressure buildup was quite low, which suggested the presence of a mechanism that significantly reduced the fuel-to-steel heat transfer. A detailed experimental data evaluation by SIMMER-III led to one possible interpretation that the steel vaporization at the surface of the steel ball blanketed the steel from the molten fuel.