ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Anil Kumar Sharma, Sanjay Kumar Das, J. Harvey
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 43-52
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4061
Articles are hosted by Taylor and Francis Online.
In the Prototype Fast Breeder Reactor, a core catcher is provided as an in-vessel core debris retention device to collect, support, and maintain in subcritical configuration the relocated core debris generated from fuel melting as a consequence of a severe accident scenario. It acts as a barrier to prevent settling of debris onto the main vessel and helps to maintain the main vessel temperature within acceptable creep range. In the Safety Engineering Division of the Indira Gandhi Center for Atomic Research, model experiments are carried out in water using a geometrically similar model to understand natural convective heat transfer and fluid flow in and around the core catcher below the grid plate. Influences of cylindrical and annular central openings (chimney) through the core catcher assembly are investigated to assess their relative thermal performances. Resistive heating elements are used as heat source to simulate debris decay heat on the core catcher. Series of experiments were carried out with both configurations. Temperatures were monitored at critical positions and compared with numerical evaluation. Flow fields and isotherms are analyzed with a computational model to understand the fluid flow and heat transfer characteristics inside the cavity along with experimental data for specified steady-state temperatures on the heat source plate. Numerical results are found to be in good agreement with those obtained from the experiments. The combined efforts of numerical and experimental work conclude that core catcher assembly with annular chimney is better in terms of natural convection heat removal capability.