ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
C. Mun, L. Cantrel, C. Madic
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 245-254
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4023
Articles are hosted by Taylor and Francis Online.
In the case of a hypothetical severe accident in a nuclear pressurized water reactor, the formation of radiotoxic RuO4(g) may occur in the reactor containment building, resulting from the interactions of ruthenium oxide deposits with the oxidizing medium induced by air radiolysis. Consequently, this gaseous ruthenium tetroxide may be dispersed into the environment; therefore, the determination of the ruthenium deposits behavior is of primary importance for nuclear safety studies. An experimental study, performed by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), using a gamma irradiator cell (EPICUR facility at IRSN/Cadarache) has been carried out in order to obtain experimental data on these interactions. The results showed that radiolytic oxidation of ruthenium oxide deposits leads to the formation of gaseous ruthenium tetroxide to a significant extent. A comparison between the revolatilized Ru fractions obtained experimentally and those obtained by calculations based on the rate laws modeling ozone irradiation effect, established in previous studies, is presented. The disagreement observed is discussed. It appears that the oxidation resulting from air/steam radiolysis products is enhanced in comparison with pure ozone effect.