ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
M. B. Kowalsky, J. Birkholzer, J. Peterson, S. Finsterle, S. Mukhopadhyay, Y. Tsang
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 169-179
Technical Paper | Tough206 | doi.org/10.13182/NT08-A4017
Articles are hosted by Taylor and Francis Online.
We describe a joint inversion approach that combines geophysical and thermal-hydrological data for the estimation of (a) thermal-hydrological parameters (such as permeability, porosity, thermal conductivity, and parameters of the capillary pressure and relative permeability functions) that are necessary for predicting the flow of fluids and heat in fractured porous media and (b) parameters of the petrophysical function that relates water saturation, porosity, and temperature to the dielectric constant. The approach incorporates the coupled simulation of nonisothermal multiphase fluid flow and ground-penetrating radar (GPR) travel times within an optimization framework. We discuss application of the approach to a large-scale in situ heater test that was conducted at Yucca Mountain, Nevada, to better understand the coupled thermal, hydrological, mechanical, and chemical processes that may occur in the fractured rock mass around a geologic repository for high-level radioactive waste. We provide a description of the time-lapse geophysical data (i.e., cross-borehole GPR) and thermal-hydrological data (i.e., temperature and water content data) collected before and during the 4-yr heating phase of the test and analyze the sensitivity of the most relevant thermal-hydrological and petrophysical parameters to the available data. To demonstrate feasibility of the approach, and as a first step toward comprehensive inversion of the heater test data, we apply the approach to estimate a single parameter: the permeability of the rock matrix.