ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Peipei Chen, Wen Wu, Barclay G. Jones, Ty A. Newell
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 89-96
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4010
Articles are hosted by Taylor and Francis Online.
This work reports on experimental studies that examine subcooled boiling on the enhanced heat transfer surface of hypervapotron structures. The use of simulant fluid (refrigerant R134a) instead of prototypic water allows examination of a full range of subcooled boiling, including up to critical heat flux (CHF). The experimental results are compared to Bjorge's model and Kandlikar's heat transfer correlation in the subcooled boiling region. It is found that the fully developed boiling curve has a slope relation of ~2.96(q'' [similar] Tsat2.96), which shows good agreement with Bjorge's correlation for flat surface channels. In addition, Kandlikar's correlation is also able to predict the heat transfer coefficient for the range from net vapor generation to the fully developed boiling region with acceptable accuracy. However, the heat transfer curve shows a significant deviation when subcooled boiling approaches CHF.