ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
R. L. Demmer, J. B. Panozzo, R. J. Christensen
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 444-452
Technical Paper | Decontamination/decommissioning | doi.org/10.13182/NT08-A4002
Articles are hosted by Taylor and Francis Online.
The Dresden Nuclear Power Station Unit 1 spent fuel pool (SFP) (Exelon Generation Company) was decommissioned using a new underwater coating process developed in cooperation with Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost-effective deactivation. The process was pioneered at INL and used to decommission three SFPs with a total combined pool volume of >900 000 gal. INL provided engineering support and shared project plans to successfully initiate the Dresden project.This paper outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. Several specific areas where special equipment was employed are discussed, and a "lessons learned" evaluation is included.