ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Jan Machacek, Laurent Cantrel, Peter Kluvanek, Marek Liska, Ondrej Gedeon
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 245-251
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3984
Articles are hosted by Taylor and Francis Online.
Behavior of iodine fission product is of prime importance for short-term radiological consequences in a severe accident occurring on a pressurized water nuclear reactor. Iodine speciation in the reactor coolant system is commonly predicted with severe accident simulation software devoted to the transport and deposition of fission products and structural materials, for instance, the SOPHAEROS module of ASTEC. In these calculation tools, chemical equilibrium is assumed to be reached instantaneously whatever the conditions are. However, some thermodynamic data are still uncertain because of lack of experimental data. Quantum-chemical calculations can be appropriate tools to estimate equilibrium constants in a first step and maybe later to determine some kinetic constants for further implementation in such codes to better assess iodine chemical behavior. This paper is an attempt to calculate some equilibrium reactions for relevant reactions that are susceptible to impact iodine chemistry. The accuracy obtained for such calculations depends on the basis set used. Moreover, relativistic effect has to be taken into account for heavy atoms like iodine or cesium to get reliable predictions.