American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 163 / Number 1 / Pages 165-179

Impact of Landscape Topography and Quaternary Overburden on the Performance of a Geological Repository of Nuclear Waste

Lars Marklund, Anders Wörman, Joel Geier, Eva Simic, Björn Dverstorp

Nuclear Technology / Volume 163 / Number 1 / July 2008 / Pages 165-179

Technical Paper / High-Level Radioactive Waste Management

The topographical driving forces for groundwater on different spatial scales in several ways influence the performance of a repository for nuclear waste located at large depth in crystalline bedrock. We show that the relation between local topographical characteristics (topographical steepness and wavelengths) in the area of a repository (kilometer scale) and the large-scale (hundreds of kilometers) surroundings, together with repository depth, are the primary controls of residence time distributions and the discharge pattern of radionuclides released from an underground repository. In addition, the topography affects the groundwater flow at repository depth and, therefore, influences the long-time degradation of the repository. In the areas studied, all located in Sweden, the local topography mainly controls the groundwater flow down to a depth of ~500 m, which is the suggested depth of the Swedish repository. The importance of the large-scale topography increases with depth but even at depth where local-scale topography is dominant, the continental-scale topography affects length and depth of flowpaths as well as groundwater velocities. The impact of large-scale topography is particularly clear in areas where the steepness of local-scale landforms is relatively small. The study also shows that quaternary deposits (bedrock overburden) may have a significant impact on the overall residence times in the underground because of their hydraulic and sorption properties. This effect is further enhanced by the fact that flow paths originating from repository depth generally emerge in topographical lows with relatively deep layers of quaternary deposits. The findings of this study underscore the need to consider multiscale topographical characteristics as well as bedrock overburden in assessments of radiological consequences of underground repositories.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement