ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Scott L. Painter, Vladimir Cvetkovic, Osvaldo Pensado
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 129-136
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3976
Articles are hosted by Taylor and Francis Online.
Time-domain random-walk (TDRW) algorithms are efficient methods for simulating solute transport along one-dimensional pathways. New extensions of the TDRW algorithm accommodate decay and ingrowth of radionuclides in a decay chain and time-dependent transport velocities. Tests using equilibrium sorption and matrix diffusion retention models demonstrate that the extended TDRW algorithm is accurate and computationally efficient. When combined with stochastic simulation of transport properties, the resulting algorithm, Particle on Random Streamline Segment (PORSS), also captures the effects of random spatial variations in transport velocities, including the effects of very broad velocity distributions. When used in combination with discrete fracture network simulations, the PORSS algorithm provides an accurate and practical method for simulating radionuclide transport at the geosphere scale without invoking the advection-dispersion equation.