ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
S. David Sevougian, Vivek Jain, Robert J. MacKinnon, Patrick D. Mattie, Kevin G. Mon, Bryan E. Bullard
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 92-100
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3973
Articles are hosted by Taylor and Francis Online.
A total system performance assessment (TSPA) model has been developed to analyze the ability of the natural and engineered barriers of the Yucca Mountain repository to isolate nuclear waste over the period following repository closure. The principal features of the engineered barrier system are emplacement tunnels (or "drifts") containing a two-layer waste package (WP) for waste containment and a titanium drip shield to protect the WP from seeping water and falling rock. The 25-mm-thick outer shell of the WP is composed of Alloy 22, a highly corrosion-resistant nickel-based alloy. There are five nominal degradation modes of the Alloy 22: general corrosion, microbially influenced corrosion, stress corrosion cracking, early failure due to manufacturing defects, and localized corrosion (LC). This paper specifically examines the incorporation of the Alloy 22 LC model into the Yucca Mountain TSPA model, particularly the abstraction and modeling methodology, as well as issues dealing with scaling, spatial variability, uncertainty, and coupling to other submodels that are part of the total system model, such as the submodel for seepage water chemistry.