ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gary M. Stange, Michael Corradini, Robert Swader, George Petry, Thomas R. Mackie, Kevin W. Eliceiri
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 191-200
Technical Paper | doi.org/10.13182/NT16-107
Articles are hosted by Taylor and Francis Online.
Uranyl nitrate hexahydrate [UO2(NO3)2 · 6H2O] (UNH) holds interest as a potential nuclear reactor fuel for manufacturing the key medical isotope 99mTc through the production and subsequent decay of 99Mo. Fuel element design for such a production method requires knowledge of the thermal properties of the fuel material, particularly in the case of UNH, which has a significantly lower melting temperature than that of fuels being used currently. A system was designed to measure the thermal conductivity of UNH by an ASTM International standard thermal probe method. Measurements were made at four temperatures within the relevant range for the reactor system (25°C through 55°C) and with a variety of material preparations. With a fill gas of air, the results demonstrate a thermal conductivity at 25°C between 0.07 and 0.10 W · cm−1 · K−1. The results are the first step toward future studies that could lead to a more efficient reactor design with a heating source term capable of meeting the demand for 99Mo production while maintaining a safe and effective thermal margin.