ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Erich A. Schneider, William C. Sailor
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 379-387
Technical Paper | Miscellaneous | doi.org/10.13182/NT08-A3963
Articles are hosted by Taylor and Francis Online.
We address the long-term uranium supply from first principles, summarizing estimates of the abundance of uranium in the crust of the earth as a function of concentration and accessibility. Defining the supply curve as a functional relationship between the cumulative quantity of uranium extracted and the cost of extracting the next unit of uranium, we note that a supply curve requires a crustal abundance model plus a correlation between ore grade and extraction cost. Surveying a number of supply curves that appear in the literature, we observe that while estimates vary widely (we observe an order of magnitude difference in forecasts of the quantity of uranium available at $100/kg U or less), they generally reflect expectations that uranium availability will be significantly greater than the Red Book numbers imply. Furthermore, by comparison with historical data for more than 40 other minerals, we show that the assumption of time invariance when formulating a supply curve is not borne out by experience. In fact, the price of most other minerals has decreased with time as well as with cumulative quantity extracted. Neither the Red Book nor the other supply curves we survey explicitly accounts for the unit-based technological learning that fosters this behavior.